Modeling Production and Inventory Problems in Discrete Time

Horst Tempelmeier

University of Cologne Department of Supply Chain Management and Production

SMMSO - Ostuni, June 2009

4 Setups and Uncertainty

Conclusion

Introduction			
0 0 0000	0 00000 000	0000 00000000 00000000	

4 Setups and Uncertainty

5 Conclusion

Introduction			
0 0000	0 00000 000		

Multi-Product Multi-Level Production and Inventory System

Introduction			
• • • •	0 00000 000		

Multi-Product Multi-Level Production and Inventory System

occups officiation officiation of the second s	
0 0 0000000 0 000000 000 00000 000 000	

Multi-Product Multi-Level Production and Inventory System

Horst Tempelmeier – Modeling Problems in Discrete Time and

Introduction			
0 0000	0 00000 000		

Multi-Product Multi-Level Production and Inventory System

Horst Tempelmeier - Modeling Production and Inventory Problems in Discrete Time

ntroduction			
	0 00000 000	0000 0000000 0000000	

The Planning Environment

Operative Planning in Production and Inventory Systems

What a planner in industry sees . . .

- Random {demands, availability of resources, lead times, yield ... }
- Dynamic {demands, capacities}
- Finite capacities, limited resources
- Responsibility for complete logistic processes, not only inventory, handling or transportation

Introduction				
0 0 0000	0 00000 000			
		Decision Su	ipport	

Planning Approaches

How can the planner handle this situation?

- Push approach, use dynamic planning models, forecast future events and treat them as deterministic
- Pull approach, react on observed (random) events

Introduction			
0 0 0●00	0 00000 000		

Decision Support

Dynamic Demand

Dynamic demand is usually treated with planning models which consider ...

• Discrete time axis (time buckets: days, weeks)

• Deterministic demand (output of a forecasting procedure) and which should include ...

• Capacity constraints (lead times are internal)

The planner makes a detailed production plan in advance before the demand occurs. If the model was correct, the plan may be feasible.

Introduction			
0 0 00●0	0 00000 000		

Decision Support

Random Demand

Random demand is usually treated with standard inventory models with ...

- Continuous time axis
- Stationary demand
- No capacity constraints (lead times are external)

The result of an inventory model is a decision rule that defines how to react on demand occurrences.

Introduction			
0 0 000●	0 00000 000	0000 0000000 0000000	

The Problem Required: The Integrated View

Industry requires a planning approach which

- is aware of dynamic demands
- accounts for uncertainty
- respects capacities (not on the average, but in each period)
- handles setups (lot sizing)

⇒ Dynamic planning + Capacities + Randomness ←

	Setups		
0 0 0000	0 00000 000	0000 0000000 0000000	

4 Setups and Uncertainty

5 Conclusion

	Setups					
0 0 0000	00000 000					
Setups The Origin of Lot Sizing						

- In the presence of setups (times or costs) lot sizing is required.
- This requires the anticipation of future demands (forecasting).

Introduction O O OOOO	Setups ○ ●○○○○		Setups and Uncertainty 0000 00000000 00000000	
	Evoluti Th	on of Lotsizi e Time Axis in Lot	ng Approaches ^{sizing Models}	

- Continuous time (stationary conditions)
- Discrete time (dynamic conditions)
 - Big bucket models
 - Small bucket models

0	\cap	20	5		

Setups ○ ○●○○○ Uncertainty 0000000 Setups and Uncertainty 0000 0000000 0000000 Conclusion

Lotsizing Models

Big bucket models

- Single-level models
 - CLSP, CLSP-L
- Multi-level models
 - MLCLSP
 - MLCLSP-L

Small bucket models

- Single-level models
 - CSLP, DLSP, PLSP
- Multi-level models
 - MLPLSP
 - . . .

	Setups		
0	00000		
0000	000	0000000	

Small Bucket Models

PLSP – Example

Horst Tempelmeier - Modeling Production and Inventory Problems in Discrete Time

	Setups		
0 0 0000	0 0000● 000		

Small Bucket Models PLSP – Extensions

- Multi-machine PLSP with common setup operator
- Variations
 - Setup time may be larger than a bucket length
 - Minimum lot size
 - Maximum lot size
 - Sequence-dependent setup times/costs
 - Parallel machines
- Useful in deterministic short-term planning situations

	Setups		
0 0 0000	0 00000 000		

Big Bucket Models

CLSP – Example

	Setups		
0 0 0000	0 00000 000		

Big Bucket Models CLSP – Extensions

- Setup carry-over (CLSP-L)
- Parallel machines
- Consideration of random demand

	Setups		
0 0 0000	0 00000 000		

Big Bucket Models CLSP-L – Example

		Uncertainty		
0	00000		0000000	
0000	000		0000000	

5 Conclusion

		Uncertainty		
0 0 0000	0 00000 000	000000	0000 0000000 0000000	
	C			

Causes of Uncertainty

- Demand (mean, variation, time of ordering)
- Breakdowns
- Production quality problems
- Delays
- Random setup times
- Planning errors (capacity restrictions)
- Data problems

0		

O O O O O O O O O O O O O O O O O O Uncertainty 000000 Setups and Uncertainty 0000 0000000 0000000 Conclusion

Observed Weekly Demand

		Uncertainty		
0 0 0000	0 00000 000	000000	0000 0000000 0000000	
	~	C 1 1		

Causes of Uncertainty

- Demand (mean, variation, time of ordering)
- Breakdowns
- Production quality problems
- Delays
- Random setup times
- Planning errors (capacity restrictions)
- Data problems

		Uncertainty		
		0000000		
0				
0000	000		0000000	

Inventory Models Applied in Industry (s, q)-Policy in MRP/AP Systems

- The formulas used for the (s, q)-policy are based on a continuous time axis (demand arrivals, review)
 Continuous review: at the beginning of the replenishment time the inventory position is exactly equal to s
- (s, q)-policy with continuous review is unrealistic in industry
- Undershoot

	Uncertainty	
0 00000 000	000000	

(s, q)-Policy in Discrete Time

Undershoot

Introduction 0 00000 Setups 0 00000 Uncertainty 00000●0 Setups and Uncertainty 0000 0000000 0000000 Conclusion O

(s, q)-Policy in Discrete Time The Relevance of the Undershoot: Example data

- Time unit: 1 day
- $\bullet\,$ Gamma distributed period demands: $\mu_D=$ 50, $\sigma_D=25$
- Target service level: $\beta = 0.95$
- Lot size: q = 100
- Modeling alternatives
 - Continuous review
 - Interpretation of the second secon
 - Ontinuous review with a lead time inflated by one period

		Uncertainty		
0 0 0000	0 00000 000	000000	0000 0000000 0000000	0

(s, q)-Policy in Discrete Time The Relevance of the Undershoot: Results

	Calculation of Reorder Point s				
	0	0	6		
Lead time ℓ	Continuous	With Undershoot	With $\ell+1$		
1	64.25	109.41	128.4		
2	128.4	170.86	189.82		
3	189.82	230.75	249.72		
4	249.72 ($\beta = 0.86$)	289.62	308.59 ($\beta = 0.98$)		
	eta < 0.95	$\beta = 0.95$	eta > 0.95		

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	

Introduction

3 Uncertainty

5 Conclusion

Horst Tempelmeier - Modeling Production and Inventory Problems in Discrete Time

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	

Dynamic and Random Demand

Planning situation

- Product-specific
 - Demand (forecasted averages and variations)

Period t	25/2009	26/2009	 35/2009
μ_t			
σ_t			

- Holding costs
- Setup costs
- Service level
- Period capacities

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000000 0000000 0000000	

Dynamic and Random Demand

Alternatives

- Common sense approach (MRP, APS)
 Compute safety stocks and add to forecasted demand
- (*s_t*, *q_t*)-policy, (*r_t*, *S_t*)-policy Use a stationary inventory policy with dynamic adjustment of parameters
- "Static-dynamic uncertainty" strategy Fix replenishment periods in advance, adjust production quantity
- "Static uncertainty" strategy Fix replenishment periods and quantities in advance

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	

Common sense MRP. APS

Procedure

APS Planning Matrix

- Forecast demand
- Add safety stock to demand
- Determine production schedule

Problems

- How to compute safety stock
- Safety stock calculation associated to demand planning

		Setups and Uncertainty	
000	0 00000 000	00000	

Dynamic parameter adjustment

Inventory policies

Procedure

- Forecast demand during lead time
- Determine order size or order cycle in advance (EOQ, ...)
- Observe demand and react (launch a replenishment order)

Problems

- Separation of cycle stock and safety stock
- (s,q): Random timing of production
- (r, S): Random production quantities
- No consideration of capacities

Introduction O O O O O O O O O O O O O O O O O Uncertainty 0000000 Setups and Uncertainty

Conclusion O

Static-Dynamic Uncertainty Strategy

Example

t	μ_t	σ_t	S_{tj}^{opt}	On Hand	Backorders	ß _c
1	200	60	336	136.24	0.24	1.00
2	50	15	-	88.31	2.08	0.99
3	100	30	-	20.99	32.67	0.90
4	300	90	746.48	446.48	0	1.00
5	150	45	-	296.53	0.05	1.00
6	200	60	-	109.99	13.46	0.98
7	100	30	-	46.51	36.51	0.93
8	50	15	-	26.47	29.97	0.90
9	200	60	340.35	140.55	0.2	1.00
10	150	45	-	25.34	34.79	0.90

$$E{Costs} = 4337$$

		Setups and Uncertainty
0	0	0000
0	00000	0000000
0000	000	0000000

Static-Dynamic Uncertainty Strategy

Exact Solution Method

 $\mathsf{E}\{C(S_{13}^{\mathsf{opt}})\} =$

Expected cost, if the demand from periods 1 to 2 is available at the beginning of period 1. S_{13}^{opt} is the minimum order level required to reach the target β service level.

Solution method: Shortest-path algorithm

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	
0000	000	0000000	

Static-Dynamic Uncertainty Strategy

Pros and Cons

- Effect of order size on risk absorbtion included
- Easy coordination of replenishment events for multiple items
- Optimal solution

+

- Random lot sizes
- Random capacity requirements

	5
0	(
00000	
000	

Static Uncertainty Strategy

Example

t	μ_t	σ_t	q_{tj}	On Hand	Backorders	ß _c
1	200	60	335.47	135.72	0.25	1.00
2	50	15	-	87.83	2.11	0.99
3	100	30	-	20.77	32.94	0.90
4	300	90	770.62	456.09	0.00	1.00
5	150	45	-	306.32	0.23	1.00
6	200	60	-	122.97	16.65	0.97
7	100	30	-	58.59	35.62	0.93
8	50	15	-	36.59	28.00	0.90
9	200	60	461.19	222.54	5.26	0.97
10	150	45	-	102.58	30.04	0.90

$$E\{Costs\} = 4549$$

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	

Static Uncertainty Strategy

Exact Solution Method

 $\mathsf{E}\{C_{24}(q_{24}^{\rm opt}|P_2^{\rm opt})\} =$

Expected cost, if the demand from periods 2 to 3 is available at the beginning of period 2. q_{24}^{opt} is the minimum replenishment quantity required to reach the target β service level.

 P_2^{opt} ist the optimum path to node 2.

	Setups and Uncertainty	
0 0 0 00000 0000 000	0000 0000000 0000000	

Static Uncertainty Strategy

Heuristic Solution Method

Dynamic lot sizing heuristics with adjusted criterion, e.g. Silver-Meal criterion

$$E\{C_{\tau t}\} = \frac{s + h \cdot \sum_{\ell=\tau}^{t} E\left\{\left[l_{\tau-1}(P_{\tau-1}) + q_{\tau t}^{*} - \sum_{i=\tau}^{\ell} D_{i}\right]^{+}\right\}}{t - \tau + 1}$$

		Setups and Uncertainty
0		00000000
0000	000	00000000

Conclusion O

Static Uncertainty Strategy

Waiting Time Distribution

Probability distribution of the waiting times: $P\{W_c \le 1\} \ge 0.98$

t	μ_t	σ_t	q_{ti}	B _c		W	$P\{W_{c1} \le w\}$
1	200	60	301.34	0.99		0	0.8333
2	50	15	_	0 97		1	0.9799
2	100	20		0.01		2	0.9968
3	100	30	_	0.83		3	1.0000
4	300	90	914.06	1.00	-	w	$P\{W_{c4} \le w\}$
5	150	45	_	1 00		0	0.9636
6	100	10		1.00		1	0.9801
6	200	60	-	0.99		2	0.9958
7	100	30	-	0.98		3	1.0000
8	50	15	_	0.96		w	$P\{W_{c9} \le w\}$
0	200	60	330.45	0.06		0	0.8773
9	200	00	550.45	0.50		1	0.9799
10	150	45	-	0.88		2	1.0000

			Setups and Uncertainty	
0 0 0000	0 00000 000		0000 0000000 0000000	
	Stat	ic Uncertain	ty Strategy	

Pros and Cons

- Effect of order size on risk absorbtion included
- Optimal solution
- Deterministic capacity requirements

Costs

+

			Setups and Uncertainty	
0 0 0000	0 00000 000		0000 0000000 0000000	
Dunan	ic and Dar	dam Damar	d with Einite Con	

Dynamic and Random Demand with Finite Capacities

Available Solution Approaches

The Real Challenge: Finite Capacities

- Limited number of solution approaches
- Based on Static Uncertainty Strategy (fixed lot sizes)
- Backorder costs (per item and period)

		Setups and Uncertainty	
0 0 0000	0 00000 000	0000 0000000 0000000	

Dynamic and Random Demand with Finite Capacities A New Heuristic: ABC_d

ABC_{β} Heuristic: Basic Principle

Transform the matrix of demands into a matrix of production quantities

Ingredients of the Heuristic

- A Sequence of products (Costs, \ldots),
- B Optimality criterion (LUC, Silver-Meal, ...),
- C Visiting sequence of demand matrix cells (E, S, SE)

		Setups and Uncertainty	
0 0 0000	0 00000 000		

Dynamic and Random Demand with Finite Capacities ABC_B Heuristic: Visiting Sequence

East $d_{11} \rightarrow d_{11} \rightarrow d_{13} \rightarrow \cdots$ $d_{21} \rightarrow d_{22} \rightarrow d_{23} \rightarrow \cdots$ $d_{31} \rightarrow d_{32} \rightarrow d_{33} \rightarrow \cdots$

 $d_{41} \quad d_{42} \quad d_{43} \quad \cdots$

		Setups and Uncertainty	
0000	0 00000 000	0000 0000000 0000000	

Dynamic and Random Demand, Finite Capacities

ABC_β Heuristic: Visiting Sequence

		Setups and Uncertainty	
))))))	0 00000 000		

Dynamic and Random Demand, Finite Capacities

ABC_β Heuristic: Visiting Sequence

South-East

		Setups and Uncertainty		
o o oooo	0 00000 000			

Dynamic and Random Demand, Finite Capacities ABC_B Heuristic: Lot Sizing Criteria

Adjusted versions of

- Least period cost criterion
- 2 Least unit cost criterion
- Seast total cost criterion
- Absolute cost criterion

000	

Uncertainty 0000000 Setups and Uncertainty

Conclusion O

ABC $_{\beta}$ Heuristic: Example

Optimum Solutions of Single-Item Problems with Infinite Capacities

Product $k = 1$				Product $k = 2$			k = 2		
t	μ_D	σ_D	Lot sizes	t	μ_D	σ_D	Lot sizes	Workload	Capacity
1	110	11	107.84	1	48	5	47.06	154.9	160
2	49	5	56.83	2	75	8	112.24	169.07	160
3	0	0	0	3	15	2	0	0	160
4	82	8	116.04	4	10	1	0	116.04	160
5	40	4	0	5	15	2	0	0	120
6	65	7	73.34	6	70	7	76.01	149.35	120

)				
C)				

Uncertainty 0000000 Setups and Uncertainty

Conclusion O

ABC_{β} Heuristic: Example

Finite versus Infinite Capacities

	Int	finite capa	cities	Finite capacities		
	Lot	sizes		Lot sizes		
t	k = 1	<i>k</i> = 2	Workload	k = 1	<i>k</i> = 2	Workload
1	107.84	47.06	154.9	107.931	47.097	155.028
2	56.83	112.24	169.07	56.871	89.231	146.102
3	0	0	0	0	0	0
4	116.04	0	116.04	80.02	22.368	102.388
5	0	0	0	47.425	17.599	65.024
6	73.34	76.01	149.35	61.987	58.013	120

			Conclusion
0 0 0000	0 00000 000	0000 0000000 0000000	

2 Setups

3 Uncertainty

4) Setups and Uncertainty

			Conclusio
0 0 0000	0 00000 000	0000 0000000 0000000	•

This is the End ...

- Gap between theory and practice
- Lot sizing has made much progress
- Inclusion of random demand requires a unifying time scale
- Discrete time scale offers the opportunity to evaluate any setup pattern w. r. t. service levels
- Service levels should match the requirements of industrial planners